一、为什么需要DC_DC模块电源?
DC-DC隔离模块电源主要应用于分布式电源系统中,用以对电源系统实现隔离降低噪声、电压转换、稳压和保护功能。使用DC-DC隔离模块电源的四大作用如下:
其一,模块电源采用隔离式设计,可以有效的隔离来自侧设备带来的共模干扰对系统的影响,使负载能够稳定的工作。
其二,不同的负载需要不同的供电电压,例如控制IC需要5V、3.3V、1.8V等;信号采集用的运放则需要±15V;继电器则需要12V,24V。而母线电压多为24V,因此需要进行电压转换。
其三,母线电压在长距离传输过程中会存在线损,故到PCB板级时电压较低,而负载需要稳定的电压,因此需要宽压输入,稳压输出。
其四,电源需要在异常情况下,保护系统的负载和本身不坏。
那么,如何选择DC-DC模块电源?
二、如何选择高可靠性的DC-DC模块电源
1. 采用成熟的电源拓扑
电源模块的设计尽量选用成熟的电源拓扑,这些拓扑已经经过时间的考验,成熟可靠。例如1-2W的定压输入DC-DC电源模块选择Royer电路,而宽压输入系列则多选Flyback拓扑,部分Forward拓扑。
2. 全负载范围内高效率
高效率意味着更低的功率损失和更低的温升,可以有效提高可靠性。在实际应用中,电源都会选择一定程度的降额设计,特别是在负载IC的功耗越来越低的今天,电源大部分时候都有可能在轻载情况下工作。因此,全负载范围内高效率对于电源系统可靠性来说是非常关键的参数,但往往被电源厂商忽略。大部分厂商为了技术手册上的参数吸引客户,往往将满载效率做到较高,但在5%-50%的负载情况下效率较低。
3. 极限温度特性
电源模块应用的地理区域非常宽广,可能有热带的酷暑也有类似俄罗斯冬天的严寒。因此要求DC-DC模块的工作温度范围要求为-40度~85度,如果在汽车BMS、高压母线监测应用,则需要工作温度为-40度~125度。
极限温度试验是能检验电源模块可靠性的方法,例如高温老化、高温&低温带电工作性能测试、高低温循环冲击试验和长时间高温高湿测试等。正规的电源开发都会经过以上测试。因此,是否有此类测试设备也成为了判断电源厂商是否为山寨厂商的依据。
4. 高隔离、低隔离电容
医疗产品要求极低的漏电流,电力电子产品需要原边和次级之间尽量少寄生电容。这两个行业有一个共性的需求,即要求尽量高的隔离耐压,和尽量低的隔离电容,用以降低共模干扰对系统的影响。如果在医疗或电力电子应用,1-2W DC_DC建议选取隔离电容低于10pF左右的电源模块,宽压产品则尽量选取低于150pF的电源模块。
5. EMC特性
EMC性能是电子系统正常、安全工作的保证,目前电子行业对产品的EMC性能都提出了很高的要求,我们经常遇到客户抱怨因EMC处理不好导致系统的复位重启甚至是早期失效,因此优良的EMC特性是电源模块竞争力。
三、电源系统应用设计的可靠性
电源本身的可靠性固然重要,但是实际上,由于电源系统工作环境的复杂性,再可靠的电源如果没有可靠的系统应用设计,终电源还是会失效。下面介绍几种常见的电源系统应用设计的方法和注意事项。
2. 降额设计
众所周知,降额设计可以有效提高电源工作寿命,但是负载过轻使用,电源的性能又无法工作在状态。 例如,金升阳DC_DC模块电源建议在负载范围30%~80%内使用,此时各方面性能表现。
3. 合理外围防护设计
电源模块应用行业非常多,应用的环境要求也不近相同,因为其通用性设计,DC-DC模块电源仅能满足通用共性需求。因此当客户的应用环境要求苛刻时,需要加适当的外围电路来提升电源的可靠性。
单独模块只能通过EN50155 1.4倍输入电压Vin的1S测试,但因为体积原因没有办法通过RIA12的标准,通过添加外围电路就能通过RIA12要求的3.5Vin/20mS的等测试要求。 因而合理的外围电路设计可以使模块满足更高等级的技术规格,使之适应更恶劣的应用环境,提升电源模块的可靠性。
4. 散热设计
工业级的电源模块的损坏大约有15%是因为散热不良导致的,电源模块是朝着小型化和集成化方向发展,但是很多应用场合电源是处于密闭的环境中连续工作的,如果积热无法散出去,电源内部的器件可能因为超过热应力而损坏。通常的散热方式有自然风冷、散热片散热和加强制性散热风扇等。热设计的几点经验分享如下:
(1) 电源模块的对流通风
对于依靠自然对流和热辐射来散热的电源模块,周围环境一定要便于对流通风,且周围无大器件遮挡,便于空气流通。
(2) 发热器件的放置
如果系统中拥有多个发热源例如多个电源模块,相互之间应尽量远离,避免相互之间热辐射传递导致电源模块过热。
(3) 合理的PCB板设计
PCB板提供了一种散热途径,在设计时就要多考虑散热途径。例如加大主回路的铜皮面积,降低PCB板上元器件的密度等,改善模块的散热面积和散热通道,可以使热量尽快向上散发;如果将DC-DC模块放在PCB的底部,则向上散发的热量会被PCB阻挡,导致产品积热无法散发出去。
(4) 更大封装尺寸和散热面积
同样功率的电源,如果可能尽量选择尺寸更大的封装和散热面更大的散热器,或者使用导热胶将电源模块外壳与机壳连接。这样电源模块拥有更大的散热面积,散热会更快,内部的温度会更低,电源的可靠性自然也就越高。
5. 匹配性设计、安规设计
电源的输入走线尽量保持直线,避免形成环路天线吸引外界辐射干扰。同时输入线和输出线需要按照UL60950的安规要求保持合适的间距,避免耐压失效。再者,电源底板下禁止布线,特别是信号线,电源变压器的电磁线会对信号形成干扰。
另外一个设计师需注意的是,需要关注电源和二次电源之间,以及电源与系统工作频率的倍频错开,避开相互之间的系统匹配性问题。
五、小结
DC_DC电源模块的可靠应用需要电源原厂提供高品质电源,同时也需要设计工程师合理的应用设计,只有从设计和应用双向考虑才能终获得可靠的电源系统。
评论列表
我要评论